
Active Client Selection for Federated Learning
Introduction

Previously, we proposed a novel algorithm, Federated Proximal Sketching (FPS), to reduce communication overhead in noisy, band-limited
wireless channels. We now focusing on reducing computational costs by introducing an adaptive client selection strategy. In federated
learning, particularly when data is heterogeneously distributed across clients, only a subset of clients significantly contributes to the global
model’s learning process. To address this, we propose an active client selection strategy that prioritizes clients based on the uncertainty in
their data distribution, thereby reducing overall computational complexity.

Drawing inspiration from the field of active learning, we employ entropy as an information-theoretic measure of uncertainty. At each epoch of
federated learning, our client selection strategy involves choosing clients with the highest measured uncertainty. We call this approach
Uncertainty-based Active Client Selection for Federated Learning (UACS-FL).

To demonstrate the efficacy of our proposed approach (UACS-FL) consider the following illustration of how data is distributed across different
clients. From Figure below it is clear that only a fraction of clients (c3, c4, c5 and c6) contribute significantly to the learning of decision boundary
in red.
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In order to choose the clients that contribute significant information at each epoch we look to compute the sample entropy at each client ci. At
client ci, let us denote the dataset as Di.

The entropy-based metric for a sample x defined as:

H(x) = −∑
ℓ

Pθ(yg|x) log Pθ(yg|x)

where yℓ ranges over all possible labels. We can calculate the entropy metric for client ci as follows:

Experimental Objectives

We consider two variants of our proposed approach:

We demonstrate the performance of our algorithm along with other baselines on three different data distribution settings over a binary
classification task. In all three experiments, the number of clients that contribute to efficient learning of the decision boundary is very less (
6 − 10) compared to the total number of clients (100). In all data distribution plots, dotted green represents the decision boundary.
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1. Epsilon greedy parameter ϵ = 0.1. In our plots we label this as Entropy+Eps-Greedy.
2. Epsilon greedy parameter ϵ = 0 ⟹  Pure exploitation. In our plots we label this as Entropy Based.
3. We compare our proposed approach against the following baseline client selection strategies:

Random Client Selection (RCS). In our plots we label this as Random Selection.
Gradient Norm-Based Selection (GNCS): Choosing clients with the largest gradient norm values. In our plots we label this as Gradient
Norm-Based.



Experiment 1

Of the 100 clients only 6 clients have samples around the decision boundary. The distribution of samples at each of these 6 clients is shown
below. The remaining 94 clients have access to samples corresponding to only one class (either red or blue).

Experiment 2

Similar to the previous setting, we distribute data around the decision boundary to only 6 clients, with the difference being that the boundary
clients now have a more uniform spread of samples along the entire decision boundary.

Experiment 3

Lastly, this setup is very similar to experiment 1 where clients around the boundary have samples confined box. Moreover, the remaining
clients that are away from the decision boundary also have a restrictive sample space.



Remarks:

Algorithm

We now describe our UACS-FL method. The algorithm is presented below. UACS-FL is based on FedAvg framework and uses AL metric
(entropy) to select clients.

Objective

min
x

[f(x) :=
n

∑
i=1

wifi(x)],

To keep it simple we choose wi = 1
n ∀i ∈ [n].

Notation

Initialization

Federated Learning Round

Active Client Selection

In all three data distribution scenarios, random client selection consistently underperforms in comparison to the proposed method.
Furthermore, while the gradient norm-based client selection achieves comparable results, the proposed method demonstrates superior
performance, notably achieving faster convergence.

wt: Global model parameters at round t.
w

(t+1)
i : Local model parameters of client i after round t + 1.

αi: Selection metric for client i.
n: Total number of clients.
m: Number of clients selected per round.
Di: Local dataset of client i.

1. Server initializes the global model parameters w0.
2. Server sets the number of selected clients m per round.

For each client i ∈ {1, 2, … , n}:
Client receives global model parameters wt from the server.
Client computes the selection metric αi based on its local model (see, compute sample entropy equation.).
Client sends αi to the server.

Server selects a set St of m clients based on epsilon greedy approach:
Step 1: Generate a random number r ∈ [0, 1]



Client-Side Computation

For each client i ∈ St:
- Client updates its local model using its local dataset Di to compute the local model parameters w(t+1)

i .

Server-Side Aggregation

Step 2:
If r ≤ ϵ (exploration step):

Randomly select m clients from the set {1, 2, … , n} without considering αi.
Else r > ϵ (exploitation step):
Select the top m clients with the highest αi​ values.

Server aggregates the parameters from the selected m clients:

wt+1 =
1

m
∑
i∈St

w
(t+1)
i

Server broadcasts the updated global model parameters wt+1 to all clients.


